Nep1 Protein from Fusarium oxysporum Enhances Biological Control of Opium Poppy by Pleospora papaveracea.

نویسندگان

  • B A Bailey
  • P C Apel-Birkhold
  • O O Akingbe
  • J L Ryan
  • N R O'Neill
  • J D Anderson
چکیده

ABSTRACT The fungus Pleospora papaveracea and Nep1, a phytotoxic protein from Fusarium oxysporum, were evaluated for their biocontrol potential on opium poppy (Papaver somniferum). Four treatments consisting of a control, P. papaveracea conidia, Nep1 (5 mug/ml), and P. papaveracea conidia plus Nep1 (5 mug/ml) were used in detached-leaf and whole-plant studies. Conidia of P. papaveracea remained viable for 38 days when stored at 20 or 4 degrees C. Nep1 was stable in the presence of conidia for 38 days when stored at 4 degrees C or for 28 days at 20 degrees C. The presence of Nep1 did not affect conidia germination or appressoria formation. Nep1 was recovered from drops applied to opium poppy leaves in greenhouse and field studies 24 h after treatment. Opium poppy treated with the combination of Nep1 and P. papaveracea had higher necrosis ratings than the other treatments. There were changes in the intercellular protein profiles, determined by sodium dodecyl sulfate gel electrophoresis and silver staining, due to application of treatments; the most intense occurred in response to the combination of Nep1 and P. papaveracea. The combination of Nep1 and P. papaveracea enhanced the damage caused to opium poppy more than either component alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Fusarium oxysporum as a biocontrol agent on Papaver somniferum

Opium poppy (Papaver somniferum) is one of the most important medicinal plants which can be cultured for use of the alkaloid morphine too. Plant poppy have been also associated with the most pests and diseases all over the world. One of the major disease is related to Fusarium oxyspoprumt which can also control plant cultivation in biggest producer of opium. However¸ the objec...

متن کامل

Variation in Oil, Protein Content and Fatty Acid Composition of Twelve Turkish Opium Poppy (Papaver somniferum L.) Lines

Opium poppy (Papaver somniferum L.) has two major products: alkaloids in the capsules and the seeds.  The seed contains oil, protein, carbohydrate, moisture and mineral matters. The seed oil is rich in unsaturated fatty acids, particularly linoleic and oleic acid. Remaining meals after oil extraction are the important source for animal diets. The United Nations recognize Turkey and India as tra...

متن کامل

Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis.

Treatment of Arabidopsis (Arabidopsis thaliana) with a necrosis- and ethylene-inducing peptide (Nep1) from Fusarium oxysporum inhibited both root and cotyledon growth and triggered cell death, thereby generating necrotic spots. Nep1-like proteins are produced by divergent microbes, many of which are plant pathogens. Nep1 in the plant was localized to the cell wall and cytosol based on immunoloc...

متن کامل

NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao.

Phvytophthora megakarya is a devastating oomycete pathogen that causes black pod disease in cacao. Phytophthora species produce a protein that has a similar sequence to the necrosis and ethylene inducing protein (Nep1) of Fusarium oxysporum. Multiple copies of NEP1 orthologs (PmegNEP) have been identified in P. megakarya and four other Phytophthora species (P. citrophthora, P. capsici, P. palmi...

متن کامل

Genetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusarium oxysporum f.sp. lycopersici

Fusarium wilt caused by Fusarium oxysporum f.sp. Lycopersici is one of the major obstacles to the production of tomato which causes huge losses in tomato products worldwide. In order to increase the tolerance to this disease, a triple structure containing PR1, chitinase and glucanase genes controlled by 35S promoter was transferred to tomato. Eight days after planting on pre-culture me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 90 8  شماره 

صفحات  -

تاریخ انتشار 2000